[wpvideo aZgLk0qA]

In the article What Is Big Data Analytics in Manufacturing?, the author defines Big Data in a manufacturing sense and also examines how big data has evolved in a manufacturing environment.  Interestingly, some of us think of Big Data as exactly as it sounds, a very large amount of data, say a petabyte of data as collected from sensors on an engine.  Big Data Analytics, in this mind frame, would then be the analyzation of this data using mathematical and statistical techniques.  But the author makes a key point – running reports on large data sets does not qualify as Big Data analytics in manufacturing.  If what I’ve just explained does not qualify as Big Data Analytics, then what does?

The article defines Big Data as follows, and I quote,

“Big Data Analytics in manufacturing is about using a common data model to combine structured business system data like inventory transactions and financial transactions with structured operational system data like alarms, process parameters, and quality events, with unstructured internal and external data like customer, supplier, Web, and machine data to uncover new insights through advanced analytical tools.”  This definition is certainly covers all the bases one could think of when it comes to understanding Big Data Analytics in manufacturing.

The transition of older technologies to a Big Data platform is happening right now.  One previous technology for collecting manufacturing data that is currently transforming to Big Data is enterprise manufacturing intelligence (EMI).  The author notes that two of the three ways this transition can happen for EMI is the ability to use structured and unstructured data as well as new analytical tools such as image, video, and geospatial data.

As big data usage in manufacturing continues to mature, it will become part of the IIoT Platform for delivering both legacy applications and Next-Gen systems.  Data will eventually be able to be taken from anywhere and delivered to anywhere while is usability will be simplified so that floor personal can use it.  In a connected, smart manufacturing environment, there is the possibility that any data collected can become useful to the process, personal, and ultimately, the bottom line.


Are most readers familiar with older technologies like EMI?

What do you think of the definition of Big Data as presented by the author?

Has anyone seen the industrial IoTs at work and if so, does this article portray a realistic picture of how manufacturing is changing?