By Gokul Siddharthan J, DCMME Graduate Student Assistant

Eye tracking

Eye tracking dates to 1879 when Louis Émile Javal noticed that readers do not fluently read a text, instead, they make pauses and short movements. His device had physical contact with the pupil. Since then there had been numerous innovators who developed improved versions of the technology. For most of the century, scientists were majorly involved in developing precise and non-invasive eye tracking techniques. Nowadays there are devices that can be worn or a web camera that can capture the image of our eye movements.

There are three phases of eye tracking evolution. First, discovering basic eye movement from 1879-1920. Second, research focusing on factors affecting reading patterns from 1930-1958. Third, improvements in eye recording systems increasing accuracy and ease of measurements from 1970-1998. The bottlenecks in technology use were the costs associated with R&D and materials. Bulky equipment, data storage and processing capabilities were other bottlenecks then.

How does an eye tracker work? It consists of cameras, projectors and algorithms. The projectors create a pattern of near-infrared light on the eyes. The cameras take high-resolution images of the user’s eyes and the pattern. Machine learning, image processing and mathematical algorithms are used to determine the eye position and gaze point. Eye tracking has been used in Samsung’s Iris scanner and Apple’s Face ID. It has also been used in visual attention sequencing and creating heatmaps. The application has used in virtual reality, gaming, medicine, and advertising. The bottlenecks in these applications are in having a more immersive user experience, a better product development, and mass utilization of consumer level devices.

However, the ethical aspects of using eye tracking have to be considered because the potential for privacy intrusion is serious in this space. Moral decisions are affected by what our eyes focus on so tracking eye movements can help in understanding the decision-making process of the user. People’s responses can be influenced by using their eye movements, as a result, the potential to be manipulated is high. Eye movements also reveal insights into how different people think, analyze and process information. It won’t be long enough before people correlate results from eye tracking with criminality.

In the medicinal field, Schizophrenia, Alzheimer’s, PTSD, Eating Disorder all have symptoms that are reflected in eye movements. In fact, one of the basic checks a doctor does on a patient is to check how the pupil reacts when a flashlight is shined on it, reflecting whether there’s any serious problem or not. Changes in pupil size, scan paths and fixation points can assist in determining which gender an individual is attracted to. As technology continues to advance, it could threaten privacy far beyond the limited confines of smartphone or computer screens. Eye tracking has the potential to reveal a lot about device users and human beings portray more than they realize from eye movements